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model with coupling over two cells requires almost twice as many
input language statements for the circuit description. Further, the
error due to the rather large cell size is the same in both models.
The measured curve in Fig. 5 shows that the model predicts the
measured impedance rather well. Since the accurate measurement
of the low-impedance loop is difficult, three values have been aver-
aged at each frequency point to improve confidence. Preliminary
measurements on the same geometry with another conductor added,
such that a U-shaped strip conductor results, showed an even larger
inductance variation with frequency.

IV. CONCLUSIONS

The equivalent circuit model which has been presented is capable
of predicting the inductanee of nonstraight eonduectors as a function
of frequency. When applied to eorner-type geometries, the inductance
was found to be much larger than for straight eonductors assuming
that both are close to a ground plane.
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Prototype Characteristics for a Class of Dual-Mode Filters
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Abstract—Selected prototype characteristics of nonequiripple
antimetric elliptic-function filters which can be realized in orthogonal
cascaded dual-mode circular or square waveguide structures are
presented. Cavity-coupling data for 4-, 6-, and 8-section 0.01- and
0.05-dB-ripple passband designs with variable stopband levels are
tabulated. Quantitative comparisons of elliptic and Chebyshev
filter designs are also discussed, indicating the superior character-
istics of elliptic networks.
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INTRODUCTION

In recent years considerable emphasis has been placed on
optimizing not only the electrical, but also the mechanical char-
acteristics of narrow-band microwave communications waveguide
bandpass filters. Near-optimum amplitude characteristics can be
achieved utilizing elliptic functions which exhibit amplitude ripple
in both the passband and stopbands [1]. However, the microwave
realization of these near-optimum polynomials in the form of coupled
cavities requires a departure from conventional cascaded syn-
chronously tuned resonators [2] which exhibit a monotonically
increasing stopband attenuation with or without a passband ripple
response. That is, negative coupling must be available between pre-
determined sets of cavities. To achieve this, the hardware realization
of such networks may make use of degenerate dual modes in single
waveguide cavities, an idea which was first proposed by Ragan [3].
An added feature of the dual-mode cavity is the obvious reduction
in size and weight.

In several excellent papers by Atia and Williams [4]-[7] the
theory, together with experimental verification of various types of
elliptic filters employing negative coupling in waveguide structures,
has been well documented. The objective of this short paper is to
present selected prototype parametric characteristics of antimetric
elliptic-function filtters which can be transformed into bandpass
networks with emphasis directed toward cascaded dual-mode wave-
guide structures. Extensive tables of resonator coupling data for
4-, 6-, and 8-section filters have been developed as an aid for rapid
design of these networks. All tabular data presented were generated
from computer programs.

PROTOTYPE NETWORK CHARACTERISTICS

The equivalent circuit for N coupled cavities is shown in Fig. 1
which, for dual-mode operation, may include the additional ter-
minal cross couplings indicated (M and My_sn) and the My
coupling which exists for N > 8 sections, i.e.,, M = Mg, where
(N = 8). Fig. 2 denotes the general orthogonal TEfi-mode circular

M Mij MN-3, N

14 ]
r /\:/_\/\
< # ; 1 ; é 3 ? N-1 N r
p S— S~
M M23

2
12

MN-1, N

Fig. 1. Equivalent circuit of N coupled cavities (N = 4-8), Cross
couplings available: N = 4: My, N = 6: My, = Mzgs; N = 8: My =
Mg, Mi; = Mss.

MODE COUPLING SCREWS

OUTPUT

Fig. 2. Cascaded dual-mode circular-waveguide-cavity filter.
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waveguide version of the circuit shown in Fig. 1. In square guide,
the mode of operation is the TE: rectangular mode.

The general low-pass characteristic transfer function can be
written as K (s) = ¢P(s)/Q(s) where e is a constant and P and §
are monic polynomials in s. As the critical frequencies of the ratio
P(s)/Q(s) are changed in accordance with (2) in the Appendix,
low-pass prototype response characteristics can be realized as shown
in Fig. 3(a) and (b) for 4-, 6-, or 8-section filters. Thus, when the
number of stopband transmission zeros (one of which is always at
infinity) is less than N — 2, which is the case for N > 4, non-
equiripple characteristics exist. Representative passband char-
acteristics for 4-, 6-, and 8-section prototype filters are shown in
Fig. 4. For all three curves, the number of stopband transmission
zeros is two, as shown in Fig. 3 (a) with S; = 50dB and B = 0.05dB,
the common parameters. Thus two transmission zeros yield a single
stopband lobe characteristics, and three zeros create the two-lobe
response. Hence the numeral following the dash mark denotes the
number of prototype stopband lobes. As N increases, the passband
ripple match improves considerably as well as the obvious skirt
sharpness (see Fig. 5).

Additional response characteristics of the prototype 8-section
2-transmission-lobe network are itemized in Table I for both 0.01-
and 0.05-dB passband edge ripple levels. The maximum passband
VSWR refers to the level of the highest reflection peak of the non-
equiripple characteristics within the passband, excluding the skirt
edge [see Fig. 3(b) 1.

Comparing a 10-pole Chebyshev filter with an 8 — 2 elliptic net-
work, each with the same passband ripple (E = 0.05 dB) normalized
to the 50-dB stopband frequency, yields a Chebyshev bandwidth
96 percent that of the elliptic. Then, since the prototype zero-
frequency time delays of each filter are 8.11 s (Chebyshev) and
4.39 s (elliptic, see Table II), the elliptic band-center loss would
therefore be (4.39/8.11) X 0.96, or 52 percent that of the Chebyshev
filter, assuming each filter type has identical resonator unloaded
€’s. If the required operating signal bandwidth was, say, 80 percent
that of the elliptic passband, this would correspond to about 83

5%
=
<
)
Z
e
'—
<

R

0

NORMALIZED FREQUENCY w’
(2)

—_
g% g
&
=z
2 ]
£ |
2 |

R — —

[
0 1 @51 ws2
NORMALIZED FREQUENCY w’

(0)

Fig. 3. Prototype antimetric elliptic-function responses. (a) Single-
transmission-lobe response. (b) Double-transmission-lobe response of
an 8-section filter (N = 8 — 2).
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TABLE 1
SomE Prororype ParaMETERS OF N = 8 — 2 I'ILTERS
R = 0.01 R = 0,05

Max Max
5 “s2 5,75 Prewa “s2 5575 .
70 2,382 9.084 1.074 2.168 8.938 1.181
60 2.084 8.861 1,076 1.901 8.668 1. 186
50 1,828 8.562 1.080 1,674 8.296 1.190
40 1,614 8.173 1,081 1,484 7.807 1,192
30 1.434 7.642 1,083 1.326 7.166 1,202

percent of the Chebyshev ripple bandwidth; then the orresponding
time-delay ratios at »" = 0.8 would be 1.53 and 1.63, respectively,
for the Chebyshev and elliptic responses. More impcrtantly, from
the loss-variation viewpoint, from o’ = 0 to 0.8, the elliptic filter
would be (1.63/1.53) X 0.52, or about 56 percent that of the
Chebyshev filter. Representative prototype time-delay char-
acteristics for the class of elliptic function filters discussed are plotted
in Fig. 6.
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TABLE II TABLE 111
ProroryPE ZERO-FREQUENCY TiMe DELAY (SECONDS) Cavity CourrLing Data For B = 0.01 pB
T, R = 0,01 R = 0.05 S;11 n x M= 12 23 34 45 14 36
s .
1 N = 4-1 6-1 8-1 8-2 4-1 6-1 8-1 8-2
70 | 4-1] 1.59235 | 1.15162 0,84407 -0.02111
. 6-112.15709 | 1.36573 0.79709 0.69586 -0.03334 .
70 1.797 2,921 4,056 4,452 | 2.154  3.295 4.438  4.807 8-11]2.75927 | 1.66930 0.84622 0.68439 0.71167  0.02032 -0.07063
8-2 | 2. 1.2645 .65 . . . -
60 1.779 2,877 3.992  4.296 | 2,129  3.236  4.364  4.024 00776 70.65945 0.36397 0.82832  0.12364  -0.24268
60 | 4-1 | 1.58970 | 1.14794 0.84910 -0.03773
50 1.747 2,811 3,908 4,090 | 2.086 3.158 4,265 1,387 6-1 | 2. 15493 1_36332 o.so?gs 0.68870 _8,84%7
8-112.75819 | 1.66793 0.84455 0.68002 0.72670  0.02104 -0.09141
40 1.691 2.716  3.796  3.832 | 2.010 3.042 4.133  4.085 8-2 | 2.00652 | 1.26033 0.65118 0.52551 0,88060  0,14397 -0.30549
30 1,593 2.579 3.646 3.502 1.880 2.817 3.961 3.709 50 | 4-1 | 1.58508 | 1.14113 0.85804 -0.06746
6-1 | 2.15159 | 1.35850 0.80948 0.67722 -0.07276
8-112.75668 | 1.66593 0.83410 0.67170 0.76389  0.04191 -0.13640
8.2 | 2.00516 | 1.24997 0.63425 0.40467 0.99214  0.20786 -0.42253
3 N=-8-2 40 | 4-1 | 1.57722 | 1.12811 0.87387 -0.12089
6-1|2.14673 | 1.35108 0.82059 0.65932 -0.10914
8-1|2.75456 | 1,66397 0.84070 0.65797 0.77623  0.01871 -0.16136
8-2 | 2.00396 | 1.23853 0.63373 0.27037 1.06420  0.25273 -0.50593
30 | 4-1 | 1.56444 | 1,10184 0.90187 -0.21829
6-1|2.13979 | 1.33823 0.83718 0.63015 -0.16567
8-1|2.75169 | 1.66072 0.83667 0.63397 0.81899  0.01997 ~0,22311
s — 8-2 | 2.00359 | 1.21490 0.65311 0.03267 1.10718  0.33989 -0.55869
<
-
w
o
‘; TABLE IV
£l Cavrry CoupLing Data ror B = 0.05 pB
w
2 s .
g 1] N r M= 12 23 34 45 14 36
-
w 70| 4-1| 1.21978 | 0.94161 0.73804 -0.01845
6-1 | 1.82409 | 1.17204 0.71104 0,63505 -0.02991
L 8-1| 2.44603 | 1.48628 0.76356 0.62978 0.66633  0.01881 -0.06848
8-2 | 1.71954 | 1.10348 0.60176 0.52109 0,79396  0.10427 -0,23993
60| 4-1 | 1.21858 | 0.93889 0.74350 -0.03294
6-1| 1,82380 | 1.17032 0.71677 0.62894 -0.04505
8-1 | 2.44695 | 1.48624 0.76445 0.62506 0.67877  0.01451 -0.08547
8-2 | 1.72082 | 1.09978 0.59029 0.46360 0.86852  0.13485 -0.31952
1 50| 4-1 | 1.21652 | 0.93378 0.75317
- . . . -0.05881
o 0.2 0.4 0.6 0.8 1.0 6-1| 1.82324 | 1.16767 0.72460 0.62024 -0. 06602
NORMALIZED FREQUENCY «’ 811 2,44823 | 1.48613 0,76278 0.61791 0.70127 0.01553 -0.11449
8-2 | 1,72290 | 1.09385 0.58198 0.35926 0.95635  0.17486 -0,41359
Fig. 6. Representative prototype time-delay characteristics for B =
0.05 dB and S, — 50 4B 40 | 4-1 | 1.21311 | 0.92375 0,77037 -0.10545
. 1 = . 6-1| 1.82300 | 1.16291 0.73666 0.60602 -0.09907
8-1| 2.45008 | 1.48604 0.76116 0.60551 0,73181  0.01547 -0, 15482
8-2 | 1.72640 | 1.08365 0.58502 0.18365 1.03520  0.22988 -0,49974
30 | 4-1{ 1.20803 | 0,90273 0.80082 -0.19041
CAVITY COUPLING 6-1| 1.82276 | 1.15418 0.75469 0.58270 -0.15036
8-1|2.45294 | 1.48613 0.75965 0.58304 0.77412  0.01401 -0.21253
8-2 | 1.73252 | 1,06320 0.61558 0.06488 1,05137  0.31428 -0.52284

The synthesis of the generalized two-port even-order network
composed of synchronously tuned coupled cavities is given in
[5], [6]. Upon reduction of the general even-mode coupling matrix
to that of a practical solution for cascaded dual-mode circular wave-
guide cavities in which selected coupling terms have been eliminated,
the remaining or modified coupling matrix was developed. Tables
IIT and IV itemize these pertinent prototype mutual coupling M
values for the circuits of Figs. 1 and 2. In addition, the loaded
Q(Q. = 1/r) of the input and output coupling slots may be deter-
mined from the tabulated resistance r values. With reference to
[81, coupling-slot dimensions for dual-mode waveguide bandpass
filters can then be determined once the fractional bandwidth W
is specified; that is, the prototype r and M values from Tables III
or IV must be multiplied by W to yield the bandpass coupling param-
eters and external coupling values.

Since the filters studied are antimetric, only half of the M values
are listed. That is, for N = 4: My, = My.; for N = 6: My = Mo,
Msﬁ = M12, and M36 = M14; for N = &: Mss = M34, M57 = Mzs,
M = My, and My = My Coupling between modes within a
single cavity is accomplished via the mode-coupling screws as
indicated in Fig. 2. Thus, for all the filters, M1, M3s, My, and M
are realized by coupling screws, whereas all other coupling terms
are realized in the form of long thin slots. The angular location of
all mode-coupling screws is 45° with respect to either orthogonal
cavity mode. However, the relative location of screws between
adjacent cavities is determined by the sign of the cross-coupling
terros My, Mse, and Mss.

CONCLUSIONS

Quantitative prototype data of even-order nonequiripple anti-
metric elliptic-function filters was given to aid the designer in making
filter-response tradeoff analyses. Improved response characteristics

of elliptic filters over conventional Chebyshev networks were
discussed. Numerical data of cavity coupling applicable to cascaded
dual-mode waveguide structures were also presented.

APPENDIX

The general characteristic function K (s) may be equated as
follows
P (s +ad)
K(s) = es¥2P — (1)
AL ey
where the a, terms are the critical frequencies. For N even, the
critical frequencies are given by

. vK
a, = (sing)V2sn <2P——|—_§) , v =13,--2P — 1 (2)

where sn( ) is the Jacobian elliptic function with argument
(vK /2P + 2), K is the complete elliptic integral of the first kind,
and the modular angle ¢ is related to the geometric mean of the
passband and stopband bandwidths.

For even-order equal-ripple antimetric networks 2P = N — 2,
i.e., when the total number of transmission zeros is two less than the
filter order. However, as the number of transmission zeros is reduced
below this upper limit, both the passband return loss and stopband
lobe structure will assume nonoptimum nonequiripple response
characteristics as the critical frequency a, distribution is changed
in accordance with the modified argument of the Jacobian elliptic
function in (2). Finally, the poles of the elliptic function filter are
given as roots of the characteristic equation
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1+ e&K(s)K(—s) =0 (3)

where only the left-half plane poles are utilized for network realiza-
tion. The transmission zeros are determined from the roots of the
denominator of (1) once the critical frequencies are known, and
these are located symmetrically on the ju axis.
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