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model with coupling over two cells requires almost twice as many

input language statements for the circuit description. Further, the

error due to the rather large cell size is the same in both models.

The measured curve in Fig. 5 shows that the model predicts the

measured impedance rather well. Since the accurate measurement

of the low-impedance loop is difficult, three values have been aver-

aged at each frequency point to improve confidence. Preliminary

measurements on the same geometry with another conductor added,

such that a U-shaped strip conductor reaults, showed an even larger

inductance variation with frequency.

IV. CONCLUSIONS

The equivalent circuit model which has been presented is capable

of predicting theinductaneeof nonstraight conductors as a function

of frequency. When applied to corner-type geometries, the inductance

was found to be much larger than for straight conductors aseuming

that both are close to a ground plane.
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INTRODUCTION

In recent years considerable emphasis has been placed on

optimizing not only the electrical, but also the mechanical char-

acteristics of narrow-band microwave communications waveguide

bandpass filters. Near-optimum amplitude characteristics can be

achieved utilizing elliptic functions which exhibit amplitude ripple

in both the pasebtmd and stopbande [1]. However, the microwave

realization of these near-optimum polynomials in the form of coupled

cavities requires a departure from conventional cascaded syn-

chronously tuned resonators [2] which exhibit a monotonically

increasing stopband attenuation with or without a passband ripple

response. That is, negative coupling must be available between pre-

determined sets of cavities. To achieve this, the hardware realization

of such networks may make use of degenerate dual modes in single

waveguide cavities, an idea which was first proposed by Ragan [3].

An added feature of the dual-mode cavity is the obvious reduction

in size and weight.

In several excellent papers by Atia and Williams [4]-[7] the

theory, together with experimental verification of various types of

elliptic filters employing negative coupling in waveguide structures,

has been well documented. The objective of this short paper is to

present selected prototype parametric characteristics of antimetric

elliptic-function filters which can be transformed into bandpass

networks with emphasis dkected toward cascaded dual-mode wave-

gnide structures. Extensive tables of resonator coupling data for

4-, 0-, and 8-section filters have been developed as an aid for rapid

design of these networks. All tabular data presented were generated

from computer programs.

PROTOTYPE NETWORK CHARACTERISTICS

The equivalent circuit for N coupled cavities is shown in Fig. 1

which, for dual-mode operation, may include the additional ter-

minaf cross couplings intlcated (~14 ad ~N-e,N) and the ~ii

coupling which exists for N > 8 sections, i.e., Mij = Mw, where

(N = 8). Fig. 2 denotes the general orthogonal TE&-mode circular

M14
Mij

‘N-3, N
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-- ./
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—
‘N-1, N

Fig. 1. Equivalent circuit of N coupled cavities (N = 4–S ), Cross
couplings available : N = 4: &f14; N = 6: M14 = i!fw ; N = S : M14 =

Mw, Mij = M3e.
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Abstract—Selected prototype characteristics of nonequiripple

antimetric elliptic-function filters which can be realized in orthogonal

cascaded dual-mode circular or square waveguide structures are

presented. Cavity-coupling data for 4-, 6-, and S-section 0.01- and

0.05-dB-ripple passband desi~s with variable stopband levels are

tabulated. Quantitative comparisons of elliptic and Chebyshev

filter designs are also discussed, indicating the superior character-

istics of elliptic networks.
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waveguide version of the circuit shown in Fig. 1. In square guide,

the mode of operation is the TE% rectangular mode.

The general low-pass characteristic transfer function can be

written m K(s) = eP(s)/Q(s) where cis a constant and P and Q

are monic polynomials in s. As the criticfl frequencies of the ratio

P(s)/Q(s) are changed in accordance with (2) in the AppendIx,

1OW-PWS prototype response characteristics can be realized as shown

in Fig. 3(a) and (b) for 4-, 6-, or 8-section filters. Thus, when the

number of stopband transmission zeros (one of which is always a.t

infinity) is less than N — 2, which is the case for N >4, non-

equiripple characteristics exist. Representative passband char-

acteristics for 4-, 6-, and 8-section prototype filters are shown in

Fig. 4. For all three curves, the number of stopband transmission

zeros istwo, asshownin Fig.3(a) with Sl = 50dBand R = 0.05dB,

the common parameters. Thus two transmission zeros yield a single

stopband lobe characteristics, and three zeros create the two-lobe

response. Hence the numeral following the dash mark denotes the

number of prototype stopband lobes. As N increases, the passband

ripple match improves considerably as well as the obvious skirt

sharpness (see Fig. 5).

Additional response characteristics of the prototype 8-section

2-transmission-lobe network are itemizedin Table I for both O.O1-

and 0.05-dB passband edge ripple levels. The maximum passband

VSWR refers to the level of the highest reflection peak of the non-

equiripple characteristics within the passband, excluding the skirt

edge [see Fig. 3 (b)].

Comparing 10-pole Chebyshev filter withan8 – 2ellipticne&

work, eachwiththe samepassbandripple (E = 0.05dB) normalized

to the 50-dB stopband frequency, yields a Chebyshev bandwidth

96 percent that of the elliptic. Then, since the prototype zero-

frequency time delays of each filter are 8.11 s (Chebyshev) and

4.39 s (elliptic, see Table II), the elliptic band-center loss would

thereforebe (4.39/8.11) X0.96,0r 52percent thatofthe Chebyshev

filter, assuming each filter type has identical resonator unloaded

Q’s. If the required operating signal bandwidth was, say, 80 percent

that of the elliptic passband, thk would correspond to about 83

0
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Fig. 3. Prototype antimetric elliptic-function responses. (a) Single-
transmission-lobe response. (b) Doubl&transmission-lobe response of
an 8-seetion filter (N = 8 – 2).
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Fig. 4. Prototype singk+transmission-loberesponseswitb R =0.05d13
and ,% = 50 dB.
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Fig. 5. Curves of stopband cutoff attenuation versus sha ‘pnem relative
to the passband ripple edge frequency.

TABLE I

SOME PROTOTYPE PARAMETERS o~N = 8 – 21’ILTERS

~“”’ ‘=”(C=I
I Max

I

Max
Pass ba.nd

51
Passtiand

~s 2 52-s1 VSWR “’52 52-51 VSWR 1

70 2.382 9.084 1.074 2.168 8.938 1.181

60 2.084 8.861 1, 076 1.901 8.668 1.186

50 1.828 S. 562 1.080 1.674 8.296 1. lqo

40 1.614 S. 173 1.081 1.484 7.807 1. Iq?.

30 1.’434 7.642 1.083 1.326 7.166 1.202

percent of the Chebyshev ripple bandwidth; then the corresponding

time-delay ratios at J = 0.8 would be 1.53 and 1.63, respectively,

for the Chebyshev and elliptic responses. More importantly, from

the loss-variation viewpoint, from co’ = O to 0.8, the elliptic filter

would be (1.63/1.53) X 0.52, or about 56 percent that of the
Chebyshev filter. Representative prototype time-delay char-

acteristics for the class of elliptic function filters d~scussed are plotted

in Fig. 6.
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TABLE III

CAVITY COUPLING DATA FORR = O.OIDB

TABLE II

PROTOTYPE ZERO-FREQUENCY TIME DELAY (SECONDS)

I
T R = 0.01

0
R =0.05

s,
N . 4-1 6.1 8-1 8-2 4-1 6-1 8-1 8-2 :

-7
70 1.797 2.921 4.056 4.452 2.154 3.295 4.438 4.807

60 1.779 2.877 3.992 4.296 2.129 3.236 4.364 4.024

50 1.747 2.811 3.908 4.090 2.086 3.158 4.265 4.387

40 1.691 2.716 3.796 3.832 2.010 3.042 4.133 4.085

30 1.593 2.579 3.646 3.502 1.880 2.877 3.961 3.709

r

1.59235
2.15709
2.75927
2.00776

1.58970
2.15493
2.75819
2.00652

1.58508
2.15159
2.75668
2.00516

1.57722
2.14673
2.75456
2,00396

1.56444
2.13979
2.7,5169
2.00359
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N

4-l
6-1
8-1
8-2

4-1
6-1
8-1
8-2

4-1
6-1
8-1
8-2

4-1
6-l
8-1
8-2

4-1
6-1
8-1
8-2

N

4-1
6-1
8-1
8-2

4-1
6.1
8-1
8-2

4-1
6-1
8-1
8-2

4-1
6-1
8-1
8-2

4-1
6-1
8-1
8-2

1.14794 0.84910 -0.03773
1.36302 0.80195 0.68870 -0.04867
1.66793 0.84455 0.68002 0.72670 0.02104 -0.09141
1.26033 0.65118 0.52551 0.88060 0.14397 -0.30549

1.14113 0.85804 -0:06746
1.35850 0.80948 0.67722 -0.07276
1.66593 0.83410 0.67170 0.76389 0.04191 -0.13640
1.7.4997 0.63425 0.40467 0.99214 0.20786 -0.42253

1.12811 0.87387 -0.12089
1.35108 0.82059 0.65932 -0.10914
1.66397 0.84070 0.65797 0.77623 0.01871 -0.16136
1.23853 0.63373 0.27037 1.06420 0.25273 -0.50593

1.10184 0.90187 -0.21829
1.33823 0.83718 0.63015 -0.16567
1.66072 0.83667 0.63397 0.81899 0.01997 -0.22311
1.21490 0.65311 0.03267 1.10718 0.33989 -0.55869

TABLE IV

CAVITY COUPLING DATA FORR = 0.05DB

M=12 23 34 45 14 36

1.21978
1.82409
2.44603
1.71954

1.21858
1.82380
2.44695
1.72082

1.21652
1.82344
2.44823
1.72290

1.21311
1.82300
2.45008
1.72640

1.20803
1.82276
2.45294
1.73252

0.94161
1.17204
1.48628
1.10348

0.93889
1.17032
1.48624
1.09978

0.73804
0.71104
0.76356
0.60176

-0.01845
-0.02991

0.01881
0.10427

0.63505
0.62978
0.52109

0.66633
0.79396

-O. 0684~
-0.23993

0.74350
0.71677
0.76445
0.59029

-0.03294
-0.04505

0.01451
0.13485

0.62894
0.62506
0.46360

0.67877
0.86852

-0.08547
-0.31952

0.93378
1.16767
1.48613
1.09385

0.75317
0.72460
0.76278
0.58198

-0.05881
-0.06602

0.01553
0.17486

0.62024
0.61791
0.35926
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Fig. 6. Representative prototype time-delay characteristics for R =
0.05dBandS1 =50dB.

O. 70127
0.95635

-0.11449
-0.41359

0.92375
1.16291
1.48604
1.08365

0.77037
0.73666
0.76116
0.58502

.0. 10545
-0. d9907

0.01547
0.22988

0.60602
0.60551
0.18365

0.73181
1.03520

-0.15482
-0.49974

0.90273
1.15418
1.48613
1.06320

CAVITY COUPLING
0.80082
0.75469
0.75965
0.61558

-0.19041
-0.15036

0.01401
0.31428

0.58270
0.58304
0.06488

0.77412
1.05137

-0.21253
-0.52284

The synthesis of the generalized two-port even-order network

composed of synchronously tuned coupled cavities is given in

[5], [6]. Uponreduction of thegeneral even-mode couphngmatrk

to that of a practical solution fol cascaded dual-mode circular wave

guide cavities in which selected coupling terms have been eliminated,

the remaining or modified coupling matrix was developed. Tables

111 and IV itemize these pertinent prototype mntual coupling M

values for the circuits of Figs. 1 and 2. In addition, the loaded

Q(Q. = l/~) of theinput and output coupling slots maybe deter-
mined from the tabulated resistance r valuw. With reference to

[8], coupling-slot dimensions for dual-mode wavegnide bandpass

filters can then be determined once the fractional bandwidth W

is specified; that is, the prototype r and M values from Tables III

or IV must be multiplied by W to yield the bandpass coupling param-

eters and external coupling values.

Since thefilterss tudieda reantimetric, only hzdf of theM values

are listed. That is, for N = 4: M*A = M~z; for N = 6: M., = M,.,

M5G = ~12, aml Mz6 = M14; for N = 8: M5c = M84, Mt37 = MB,

M78 = M,,, and M58 = M14. Coupling between modes within a

single cavity is accomplished via the mode-coupling screws as

indicated in Fig. 2. Thus, for all the ~ters, Mu, MW MEc, and M78

are realized by coupling screws, whereas all other coupling terms

are realized in the form of long thh slots. The angular location of

all mode-coupling screws is 45° with respect to either orthogonal

cavity mode. However, the relative location of screws between

adj scent cavities is determined by the sign of the cross-coupling

kITOS M14, kf38, and itf58.

of elliptic iilters over conventional Chebyshev networks were

discussed. Numerical data of cavity coupling applicable to cascaded

dual-mode waveguide structures were ako presented.

APPENDIX

The general characteristic function K(s) may be equated as

f Ollows

K (S) = CSN–2P

2P-I (S2 + ~vz)

II
8=1,3, . . . (s’%2 + 1)

(1)

where the am terms are the critical frequencies. For N even, the

critical frequencies are given by

()UK
aw = (sin@) 1/2sn

2P+2 ‘
v = 1,3, . ..2P–1 (2)

where sn ( ) is the JacobIan elliptic function with argument

(vK/2P + 2), K is the complete elliptic integral of the first kind,

and the modular angle o is related to the geometric mean of the

passband and stopband bandwidths.

For even-order equal-ripple antimetric networks 2P = N – 2,

i.e., when the total number of transmission zeros is two less than the

filter order. However, as the number of transmission zeros is reduced

below this upper limit, both the passband return loss and stopband

lobe structure will assume nonoptimum nonequiripple response

characteristics as the critical frequency ati distribution is changed

in accordance with the modified argument of the Jacobian elliptic

function in (2). Finally, the poles of the elliptic function filter are

given as roots of the characteristic equation

CONCLUSIONS

Quantitative prototype data of even-order nonequiripple anti-

metric elliptic-function filters was given to aid the designer in making

titer-response tradeoff analyses. Improved response characteristics
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1 +&K(s) K(–s) = o (3)

where only the left-half plane poles are utilized for network realiza-

tion. The transmission zeros are determined from the roots of the

denominator of (1) once the critical frequencies are known, and

these are located symmetrically on the jb axis.
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